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An alternative method of obtaining the equilibrium configurations of a rotating 
body consisting of a perfect fluid is outlined. Basically, the method involves 
recasting the gravitational hydrodynamic equations into a set of partial differen- 
tial equations of first order in the radial direction such that a center-outward 
integration can be performed. Specifically, with suitable initial conditions at the 
origin of an r, 0 grid, a numerical integration is performed outward along a 
number of selected 0-rays, with the required 0 derivatives at each step being 
determined numerically from the values of the functions on the different rays. 
Applicable to both Newtonian and relativistic formulations, the technique is 
similar to that often used to obtain equilibrium configurations in spherically 
symmetric models. 

1. I N T R O D U C T I O N  

In the  pe r iod  1700-1900, the  bas ic  ma thema t i c a l  and  phys ica l  fo rma l i sm 
requ i red  to tackle  the p r o b l e m  of  ob ta in ing  the equ i l ib r ium conf igura t ions  
o f  a ro ta t ing  fluid b o d y  was bui l t  up  th rough  the con t r ibu t ions  o f  such 
scientists  as Newton ,  Cla i rout ,  Legendre ,  Laplace ,  Jacobi ,  Poisson,  and  
Po incar r .  In  the pe r iod  fo l lowing  1900, the  c lass ical  t echniques  were ref ined 
and,  with the  a id  of  the compute r ,  new ones were devised.  More  recent ly ,  
var ious  researchers  have a d a p t e d  some o f  these  N e w t o n i a n  me thods  to the 
re la t ivis t ic  case (Har t l e  and  Thorne ,  1968, Borner  and  Cohen ,  1973; Har t le  
and  Munn ,  1975; Sark i syan  and  Chuba ryan ,  1977). 

In  this paper ,  ano the r  m e t h o d  for  de te rmin ing  the equ i l ib r ium configur-  
a t ions  o f  an axia l ly  symmet r i c  and  ro ta t ing  b o d y  is out l ined.  Basical ly,  the 
a p p r o a c h  involves recas t ing  the grav i ta t iona l  h y d r o d y n a m i c  equa t ions  into 
a set o f  pa r t i a l  different ial  equa t ions  o f  first o rde r  in the radia l  d i rec t ion  
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such that a center-outward integration can be performed to obtain a unique 
equilibrium configuration. Applicable to both Newtonian and relativistic 
formulations, the technique is a natural extension of the method used to 
obtain equilibrium configurations in spherically symmetric models 
(Schwarzschild, 1958). 

Basically, the problem under investigation consists in finding distribu- 
tions of angular velocity, pressure, density, and the gravitational field (both 
inside and outside the body) that are consistent with the equations of the 
gravitational-hydrodynamic theory in question. Since there are usually many 
such compatible distributions, it is necessary to specify subsidiary and 
boundary conditions in order to determine a unique configuration. 

In the modeling of stars, astrophysicists are also concerned with various 
thermodynamic properties, such as convection, circulation, temperature 
distribution, and stability against oscillations. Such considerations lie out- 
side the scope of this paper. That is, this paper is concerned specifically 
with the problem of determining an equilibrium configuration influenced 
only by mechanical properties, such as pressure, density, velocity, energy 
density, and, of course, the gravitational field. To that end, for the Newtonian 
model, a set of partial differential equations that are amenable to a method 
of center-outward integration for obtaining an equilibrium configuration is 
derived. Then, a similar set of partial differential equations is obtained for 
the relativistic model. 

2. THE NEWTONIAN CASE 

2.1. A Set of Equations for the Newtonian Model 

Now, in a classical theory, a rotating body consisting of a perfect fluid 
can be described by seven Newtonian equations involving the following 
Eulerian variables: 

(~, p,p, v, v)  (1) 

with e, the internal energy density per unit mass; p the rest-mass density; 
p the pressure; v the velocity of the fluid; and V the gravitational potential. 
Letting a comma and a semicolon denote the ordinary partial and covariant 
derivatives, respectively, we can write these seven Newtonian equations, 
where G is the gravitational constant, as follows: 

Equation of continuity: 

p,mv m + pva;~ = 0 (2) 

Equations of motion: 

v a s t y "  = - v ~ - m , ~ l  p (3) 
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Newtonian law of gravitation: 

g~'~V. ,~ = 4"rcGp 

Conservation of energy: 

Equation of state: 

(4) 

Note that, in order that they be determinable easily in all coordinate systems, 
these Newtonian equations have been written in terms of a Newtonian 
metric and a fourth component  of  the velocity with respect to time. For our 
purposes, the only admissible coordinate systems will be those wherein 
v '  = 1. Note that, with regard to equation (4) in a Newtonian theory, the 
time derivatives of  the gravitational potential V are considered to be zero. 

p = p ( p )  (6) 

are 

2.2. Imposing Axial  Symmetry on the Newtonian Model  

Now, in spherical coordinates, assuming axial symmetry, e(r, 0), 
r(r, 0), p(r, 0), V(r, 0), v3(r, 0), and v ~ = 1; the Newtonian metric is [ 100 0] 

1 0 0 (7) 
g ~ =  0 r 0 

0 0 r sin 0 

From equation (7), it follows that the only surviving connection terms 

F22 = - r ;  F~2 1/r; F~3 --r sin 0 
(8) 

2 
1"33 = - s i n  0 cos 0; F33 1/r; F33 = cot 0 

Now the equation of continuity becomes a trivial identity of  the form 0 = 0. 
One equation of motion also becomes a trivial identity, with the other two 
yielding: 

- (1 / r )v3  v3 = - V.1 -P , I /  P (9) 

- ( c o t  O)v3v 3 = - V 2 - p y p  (10) 

Furthermore, the equation of gravitation becomes 

V,1 = - V 2 J r 2 - Z V , / r - ( c o t  O) V2/ r2 + 47rGp (11) 

~ ~ = ( p / p ~ ) p , ~  (5 )  
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2.3. Obtaining the Center-Outward Form of the Newtonian Equations 

Now, to rearrange this set of  Newtonian equations into a form suitable 
for center-outward integration, let 

E = d p l d p ,  Y = In p (12) 

Then, since v3 = g33 v3, the two equations of  motion become 

- r  sin 2 0(v3) 2 = - V 1 - EY1 (13) 

- c o t  0 sin 20rE(v3) 2 = - V 2  - E Y 2  (14) 

whence, taking the derivative of equation (13) with respect to 0 and the 
derivative of  equation (14) with respect to r and subtracting, we find 

E I Y 2 - E 2 Y 1  ..3 t a n  0v32 ~- . . . .  (15) 
t~'x r 2r sin 0 cos 0 

Now, assuming an equation of state of the form p = K p  ~,  where K and dp 
are suitable constants, the outward-integrable set of equations describing 
the Newtonian model can be written as 

P =P(P)  

Vl = z  

Z1 = - ( c o t  0V,2 + V,22)/r e - 2 Z / r  + 4 ~ G e  Y 

Y1 = [(v3) 2r sin 2 0 - Z ] / E  

e = p / [ p ( r  1)] 

3 o ~2/r v,1 = tan 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

2.4. Obtaining Equilibrium Configurations in the Newtonian Case 

Equations (13)-(21) can be integrated (numerically) from the center 
of  the rotating body outward along selected 0 directions (i.e., along selected 
rays). In the process of  center-outward integration, the values of  the 0 
derivatives are obtained numerically at each step of the integration from 
the values of  the functions on the different rays. However, it must be noted 
that, for the center and the z axis, in order to carry out center-outward 
integration, equations (16)- (21) must be rewritten to remove indeterminate 
expressions of  the form 0/0. This rewriting can be done with the aid of  
l 'H6spital 's  rule of elementary calculus. 

In order to start the integration, it is necessary to specify suitable initial 
conditions at the center of  the rotating body. By use of axial symmetry we 
find that the Z of equation (17) is zero at the origin. Furthermore, since 
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the gravitational potential V is determined only to within an arbitrary 
constant, V can be assigned the value of  zero at the origin. Now, upon 
examining equation (18), it is found that, at the origin, 

Z1 = 47rGe v/3 - (cot 0 Z,12 @ Z,122)/6 (22) 

Thus, a gravitational potential V must be chosen so as to satisfy equation 
(22). An examination of  equation (22) yields that, at the origin, the second 
radial derivative of potential V can take the form 

V,1 : (~) ~'p + A (3 cos 2 0 - 1) (23) 

where A is an arbitrary constant. 
What about the specification of the angular velocity v 3 at the origin? 

Fortunately, equation (21) can be integrated to give 

oo 

v 3= Z v~,r z" sin2" 0 (24) 
n = 0  

from which it is clear that it is impossible to specify all the information 
regarding the rotation of  the body from the values at the origin of v 3 and 
,/)3 3 ,b v,11, etc., without going to infinite-order derivatives in the radial direc- 
tion. However, in dimensionless units (where the radius of the body along 
the equatorial plane is assigned the value 1), the terms of the summation 
sequence in equation (24) are of decreasing significance. Consequently, for 
practical calculations only a finite number of the constants v2, need to be 
specified. Thus, it is clear that equation (24) can be used to replace equation 
(21) in the outward-integration set. With the aid of equation (23) the 
equilibrium equations (13)-(14) can be integrated to give 

V =  ~ ~ v3"r2"+2sin 2"+20+-Ec-E  (25) 
, :o  2 n + 2  qb-1 

2.5. Juncture Conditions and the Surface of  the Rotating Fluid Body 

At the boundary of a rotating fluid, where pressure and density vanish, 
the functions of Newtonian and relativistic gravitational theories are non- 
analytic. Does this situation at the surface of the body introduce restrictions 
on the values that the variables of the theory can take at the center of the star? 

Since in Newtonian physics the essential requirements of the juncture 
conditions are that the gravitational potential V and its first derivative be 
continuous across the surface, it follows that the center-outward integration 
can be extended beyond the surface of the body to determine the gravita- 
tional field outside the body without any restrictions at the origin. 
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2.6. Boundary Conditions at Infinity 

The constant A of equation (23) is not determined by the boundary 
conditions at the surface of the star. Is the constant A determined by the 
boundary conditions at infinity? The arguments and the numerical results 
of the following sections show that A is restricted, but not determined by 
the boundary conditions at infinity. And since A is not determined uniquely, 
it follows that for each angular velocity distribution for which the star has an 
outer boundary there exists an infinite number of equilibrium configurations 
for each central density. 

The question now arises as to whether or not an outward integration 
will yield a gravitational potential that approaches a constant value as r-> oo. 
It seems reasonable to assume that, at least for some sequences of  the 
coefficients v2n (i.e., v2n = 0 for all n > some integer N) ,  the values of 
pressure and density become less than any arbitrarily chosen small values 
for sufficiently large r. That is, the body does have an outer limit. In this 
case outside the body the equatons reduce to 

p ~--" 0, p : 0, V 3 = 0 (26) 

V1 : Z (27 )  

Z a = - ( c o t  0 V2+ V22) / r2-2Z/r  (28) 

Now, if the terms involving V2 and V22 become insignificant compared 
to the term - 2 Z / r ,  for sufficiently large r, equation (28) becomes 

Z1 = -2Z/r ( 2 9 )  

which can be analytically integrated to yield 

Vaoc 1/r 2 (30) 

Naturally if, for sufficiently large r, equation (28) is not approximated by 
equation (29), one would not expect the solution to exhibit the desired 
behavior that the potentials at infinity be well behaved. 

3. THE RELATIVISTIC CASE 

3.1. A Set of  Equations for the Relativistic Model 

Retativistically, a rotating body consisting of a perfect fluid can be 
described in terms of 13 relativistic equations involving 17 unknowns: 

(e, p, p, u a, g ~ )  (31) 

with e the internal energy density; p the proper rest density; p the pressure; 
u a the 4-velocity of the fluid; and g ~  the covariant metric coefficients. 
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Upon imposition of four coordinate conditions, a set of 17 equations 
in 17 unknowns can be obtained. These relativistic gravitational hydrody- 
namic equations are: 

Equation of continuity: 

Equations of motion: 

(pu ~);~ = 0 (32) 

T;V = 0 (33) 

Einstein field equations: 

1 

Normalization equation: 

g ~ u ~ u  ~ = - I 

Equation of state: 

(34) 

(35) 

p = p ( p )  (36) 

3.2. Imposing Axial  Symmetry on the Relativistic Model  

Assume that the geometry of a stationary rotating fluid body has: 
(i) A killing vector field ~, that is everywhere timelike and has unit 

length at the origin. 
(ii) A killing vector field ~0 that is everywhere spacelike and with 

closed orbits, which in the infinitesimal neighborhood of the radial origin 
is orthogonal to ~:~ and whose length is given by r sin 0. 

(iii) A 4-velocity of the fluid such that 

u = u'~:t + u+~o (37) 

(iv) An equatorial plane of symmetry. 
It can then be argued that a unique spherical coordinate system (x ~ = r, 

x z= 0, x 3 = ~b, x 4= t) can be found that satisfies condition (ii) and in which 
the metric can be given the form 

ds 2 = dr2 + Q2 dO2+ Q2 e2B sin ~ 0 dq~ 2 - e - 2 x  dt2+2 W sin 2 0 d~b dt 

(38) 

where Q, B, X, and W are functions of r and 0 only. 
An examination of these equations reveals that, as in the Newtonian 

case, the equation of continuity has become a trivial identity. Furtbermore, 
if the stress-energy tensor is expressed as 

T~,~=Hu.u~+pg~,~ ,  where H =  l + e + p / p  (39) 
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the two surviving equations of motion are 

/~/3U31 + U4Ig41 = -EY,1  , u3u32-}- u4~42 = -EY,2  (40) 

E = ( 1 / H )  dp/dp,  Y = l n p  (41) 

Now, since only six of the field equations are nontrivial and since two 
of the Bianchi identities are nontrivial, there are only four independent 
field equations. Hence, with the imposition of axial symmetry, it appears 
that the result is an indeterminate system of eight equations in nine 
unknowns (i.e., two equations of motion, four field equations, one normaliz- 
ation equation, and one equation of state). However, another equation, 
namely, 

D e / D T  = ( p / p )  D p / D T  (42) 

(which is derived from the equations of motion and the normalization 
equation) survives in the form 

D e / D p  = p / p 2  (43) 

So, there are in fact nine equations in nine unknowns. 

3.3. A Set of First-Order Partial Differential Equations for the 
Relativistic Model 

Can the above system of equations be put in a form suitable for outward 
integration? Now, the Einstein field equations are linear in the terms 
involving second-order derivatives. Hence, they can be solved for the four 
variables Q,n, B,n, X~I, and Wal. Along with some help from the normaliz- 

3 u 4 Thus, ation equation, equations (40) and (41) can be solved for u l and ,1. 
it is a fairly straightforward (although somewhat lengthy) procedure to 
express the equations of the relativistic model as a set of first-order partial 
differential equations similar to those of equations (16)- (21). 

3.4. Obtaining Equilibrium Configurations in the Relativistic Case 

In the relativistic case, as in the Newtonian, the investigator has the 
task of choosing appropriate initial conditions at the center of the rotating 
fluid. Fortunately, the investigator is free to demand that the metric have 
a Minkowskian form at the center, namely that 

ds 2 = dr2+ r 2 dO2+ r 2 sin 2 0 dq~ 2 -  dt 2 (44) 

Hence, Q must vary as r at the origin. Thus, Q,1 = 1, etc. Naturally, only 
the derivatives to the first order can be specified in this manner. 
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As in the Newtonian case, second-order derivatives of the ferm A32 , 

A22, and A.122 (etc.) on the metric coefficients must be chosen to satisfy 
their respective differential equations at the origin, whence, if the relativistic 
ease allows nonzero values for these derivatives (and the Newtonian case 
strongly suggests that it will), it follows that there will be families of configur- 
ations. 

Now, how should u 3 be specified at the origin? Unfortunately, the 
3 differential equation for u l cannot be integrated as is possible in the 

Newtonian case. Nevertheless, from the correspondence between 
Newtonian and relativistic theories, it follows that in a sufficiently small 
region around the origin the expansion of equation (23) is valid. Thus, the 
equilibrium configurations of  both the Newtonian and relativistic models 
are parametrized by the specification of the central density Pc and by 
constants specifying the nature of  the gravitational potential(s) at the center 
of  the body and the central angular velocity u3c(p) at some minute central 
radius. 

3.5. Juncture Conditions and the Boundary Conditions in the 
Relativistic Model  

In general relativity, the question arises of how to extend the integration 
outside the body. Here, the integration outside the body can be accomplished 
by the use of the juncture conditions of Bonnor and Vickers (1981). Indeed, 
when the same coordinates are used inside and outside the body, the juncture 
conditions always reduce to the simple requirement that the metric 
coefficients and their first derivatives be continuous across the boundary of 
the rotating body. 

As in the Newtonian case, one is concerned also with boundary condi- 
tions at infinity on the gravitational potentials (i.e., metric coefficients). 
Does the solution approach a Minkowskian metric? Given a potential 
distribution on any given sphere outside the body, it follows that one can 
specify the exterior field in terms of Legendre functions. Since these outside 
Legendre functions will depend on inverse powers of the radius, it is clear 
that the exterior field will indeed satisfy the appropriate boundary conditions 
at infinity. 

4. NUMERICAL STUDIES 

The center-outward integration method of obtaining equilibrium 
configurations was applied to the simple case of uniformly rotating poly- 
tropes. More specifically, a comparative study using a Tandy 1000 with 
microsoft basic was carried out with respect to the work of James (1964). 
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At this point, it should be noted that, although the outward-integration 
approach appeared to be conceptually sound, there is still a major  concern 
of numerical instability introduced when the 0 derivatives calculated at one 
step are fed back into the equations for the next integration step. 

In this investigation, I therefore used three different approaches to 
examining numerical instability resulting from the calculation of the 0 
derivatives (i.e., to study the sensitivity of  the proposed method to the 
calculation of the 0 derivatives), namely: 

1. The STARMOD model: least square fitting to the form A sin 2 0 + 
B sin4 0, where A and B are determined at each integration step by the 
method of  least squares. 

2. The STARTAYR model: least square fitting to Taylor expansions 
to the second order (and smoothed over a given number  of  rays around 
each ray) in terms of  0. 

3. The STARCOMB model: least square fitting to the form of step 1 
on the rays near the pole and to the form A cos 2 0 + B cos 4 0 on the rays 
near the equator. 

Again, according to the theoretical underpinnings of  the outward- 
integration approach to finding the equilibrium configurations investigated 
by James (1964), there exists a family of equilibrium solutions. Con- 
sequently, in order to make the desired comparisons, it was necessary to 
select the element of  that family that specifically corresponds to James '  
solutions. In particular, it was necessary to specify the value of the constant 
A. By trial and error it was found that if 2.5 times the angular velocity u 3 
squared (where angular velocity is specified in dimensionless units formed 
using the speed of light and the radius of  the star) is used for A James data 
could be reproduced within reasonable limits. This value of A was used for 
all the simulations presented. 

All the numerical data presented are in terms of dimensionless units 
as defined by James (1964). Table I provides the data obtained from the 
three models described above and the data provided by James when a 
polytropic index of 2, 15 0 rays, and a James rotation of A = 0.005375 were 
used. The comparison is done at a point near the largest central velocity 
that terminates, since at this point the differences between the solutions is 
largest. 

The differences in the data in Table I confirm that the calculations of  
the 0 derivatives are numerically a significant part of  the method. Neverthe- 
less, the three approaches outlined above exhibit similar behaviors, with 
the STARCOMB model consistently yielding results closest to that of  James 
(1964). 

At this point, it should be noted that no method has been found for 
determining the absolute error in any of the methods. Consequently, in this 
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Table I. Comparison of the Various Models ~ 
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James Starmod Starcomb Sta~ayl 

Rp 4.05671 4.289 4.292 4.395 
R e 6.12214 6.209 6.145 5.141 
M 2.6501 2.644 2.644 2.626 
E~ 0.006312 0.00849 0.00853 0.0515 

'~Rp is the radius of the pole at termination, R e is the radius of the equator at 
termination, M is the mass of the star at termination, and Eg is the effective 
equatorial gravity. 

Table II. Comparison of Selected rotations over the Range a 

V e Rp n~ M E~ 

0.00 4.352 4.352 2.411 0.1272 
4.359 4.359 2.412 0.1275 

0.25 4.339 4.383 2.420 0.1239 
4.352 4.384 2.421 0.1245 

1.00 4.299 4.480 2.447 0.1136 
4.317 4.481 2.448 0.1142 

1.50 4.272 4.552 2.466 0.1062 
4.308 4.549 2.467 0.1071 

2.00 4.245 4.633 2.486 0.0984 
4.295 4.623 2.486 0.0995 

2.50 4.218 4.723 2.506 0.0901 
4.290 4.717 2.506 0.0910 

3.00 4.190 4.826 2.528 0.0812 
4.285 4.823 2.528 0.0819 

3.50 4.153 4.947 2.551 0.0713 
4.277 4.946 2.550 0.0721 

4.00 4.135 5.095 2.575 0.0603 
4.277 5.100 2.573 0.0609 

4.50 4.106 5.287 2.600 0.0474 
4.280 5.300 2.597 0.0480 

5.00 4.078 5.578 2.628 0.0305 
4.290 5.605 2.623 0.0313 

5.375 4.057 6.122 2.650 0.0063 
4.292 6.145 2.644 0.0085 

~See Table I for abbreviations; also, V,. is the central velocity in units 
as specified by James. The upper number is from James' data; the 
lower number is from STARMOD data. 
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study, the error analysis had to be restricted to comparisons with James' 
data. (For the STARCOMB model, the total numerical error in the solution 
may be considered as composed of two parts, a Runge-Kutta error and a 
derivative error. Here, the Runge-Kutta error is of the fifth order in step 
size h. The 0 derivative error may be considered as the error introduced 
when the values of the 0 derivatives are calculated at each step and the 
error that results from these step errors being integrated over all the remain- 
ing steps of the integration. Naturally, if there are many integration steps, 
a small numerical error early in the integraion could result in considerable 
error further in the integration.) 

Table II provides a comparison over selected rotations between the 
James data and the data obtained by me from the STARMOD computer 
program. The data of Table II essentially reproduce the data of the earlier 
investigations by James. It is therefore reasonable to assume that the 
outward-integration method described provides another method of deter- 
mining equilibrium configurations. 

5. DISCUSSION 

One of  the significant findings of this paper is the fact that the outward- 
integration method does not select an equilibrium configuration from a 
family of such configurations, but rather details all such families. 

Now, the finding of  an infinite number of equilibrium configurations 
appears at first to be in disagreement with the earlier work of James (1964), 
Ostriker and Bodenheimer (1968), and Ostriker and Mark (1968), in which 
unique equilibrium configurations were determined. However, a review of 
the work of  James reveals that his method (of finding an equilibrium 
configuration of a rotating polytrope) consisted in an iterative approach in 
which he looked for a solution that satisfied the continuity requirements at 
the surface of the body. The subtle point is that, in James' iterative method, 
the radius at which this condition is to be satisfied is not known beforehand. 
Consequently, although his method leads to an equilibrium configuration, 
there can be, for the same central density, other equilibrium configurations 
that terminate at different equatorial radii. 

In outlining their principal reasons for relating the potential and density 
by integral relations instead of differential equations, as we have done here, 
Ostriker and Mark (1968) state: "the boundary conditions are naturally 
incorporated in the evaluation of the integral, making it unnecessary to go 
through the tedious procedure of supplementing equation (6) [our equation 
(4)] by an arbitrary solution to Laplace's equation and determining the 
unknown constants by matching the potential and the potential gradient 
across the boundary with an appropriate external solution." 
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At this point, it must be asked what constitutes an appropriate external 
solution. For our part, an appropriate external solution is one in which the 
gravitational potential approaches zero (or a constant) as r approaches 
infinity and one for which the gravitational potential satisfies Laplace's 
equation. Now, since the general solution to Laplace's equation is known 
(in terms of a series involving Legendre functions), it can be seen that there 
is an infinite number of  appropriate external solutions. 

It follows, then, that there exist many equilibrium solutions (corre- 
sponding to the different external solutions). However, Ostriker and Mark 
do not say to which external solution their self-consistent-field method 
converges. Again, it is seen that the iterative nature of the self-consistent-field 
method, while ensuring that the final solution is an equilibrium configur- 
ation, in no way excludes the possibility that, for a given angular velocity 
distribution, other equilibrium configurations might not also exist. One of 
the significant aspects of  the proposed method is that it does not select an 
equilibrium configuration from a family of equilibrium configurations, but 
rather details all such families. 

The results of this study, then, are not in disagreement with the work 
of James, but rather serve to point out a characteristic of James' approach 
that seems to have been overlooked. Indeed, the numerical studies confirm 
that, by increasing the central angular velocity until the point is reached at 
which the effective equatorial gravity at termination is zero, one can construct 
a sequence of solutions. For central angular velocities beyond the point 
where the effective gravity at termination is zero, density as a function of 
the radius from the center of the star follows a rising and falling pattern, 
the characteristics of which need further investigation. 

6. CONCLUSION 

Many researchers have studied the problem of determining the equilib- 
rium configuration of a rotating fluid body. In general, the approach taken 
by these researchers can be grouped into three catgories: (1) those wherein 
it is assumed that the departure form spherical symmetry is small. Examples 
of  this method are the Clairout-Legendre expansion (Lebovitz, 1970), the 
Chandrasekhar-Milne expansion (Milne, 1923), and the quasispherical 
method (Takeda, 1934); (2) those wherein various distributions, such as 
that of the angular velocity, are assumed ad hoe to take a particular 
mathematical form (Kopal, 1973); and (3) those that involve an iterative 
approach on trial distributions (Ostriker and Mark, 1968). 

The center-outward integration approach discussed here has certain 
advantages over the previous methods. First, the outward-integration 
approach is a natural extension of the method used in spherically symmetric 
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models.  Second, since the method involves a set of  partial differential 
equations, all the theorems of  PDEs are available for analysis. Third, the 
outward-integration method is equally applicable to Newtonian or relativis- 
tic theories. 
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